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Abstract: Surface texturing is an effective method to reduce friction without the need to change
materials. In this study, surface textures were transferred to rubber samples in the form of dimples,
using a novel laser surface texturing (LST)—based texturing during moulding (TDM) production
process, developed within the European Project MouldTex. The rubber samples were used to
experimentally determine texture-induced friction variations, although, due to the complexity of
manufacturing, only a limited amount was available. The tribological friction measurements were
hence combined with an artificial intelligence (AI) technique, i.e., Reduced Order Modelling (ROM).
ROM allows obtaining a virtual representation of reality through a set of numerical strategies for
problem simplification. The ROM model was created to predict the friction outcome under different
operating conditions and to find optimised dimple parameters, i.e., depth, diameter and distance,
for friction reduction. Moreover, the ROM model was used to evaluate the impact on friction when
manufacturing deviations on dimple dimensions were observed. These results enable industrial
producers to improve the quality of their products by finding optimised textures and controlling
nominal surface texture tolerances prior to the rubber components production.

Keywords: reduced order modelling; dynamic friction; rubber seal applications; tensor decompo-
sition; laser surface texturing; texturing during moulding; digital twin; machine learning; artificial
intelligence

1. Introduction
1.1. Surface Texturing in Tribological Applications

In most dynamic rubber applications, low friction is desired to increase the energy
efficiency of the tribological system. Therefore, improved friction behaviour is an im-
portant design objective in the development process of components like dynamic seals.
Within the industrial and scientific communities, significant improvements in dynamic
seal performance have been achieved through a series of technological advances, such as
the introduction of low-friction polymers [1]. However, this approach is limited by the
operating conditions, such as temperatures or the chemical resistance of the new materials.

Surface texturing is an effective method to modify the friction level without changing
materials or the lubricant in the dynamic seal contact. An early method of surface texturing,
used to improve the tribological performance of mechanical components, is cylinder honing
in internal-combustion engines [2]. Further experimental and theoretical studies revealed a
significant reduction in friction due to grooves [3] and, in particular, micro dimples in the
reciprocating contact of piston rings and cylinder bores of combustion engines [4,5].

The analysis of laser surface textured (LST) piston rings have been extended to model-
based and experimental investigations of mechanical seals, identifying optimised dimple
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dimensions with lowest friction for specific operating conditions [6,7]. In this context, the
dimples are advantageous as they serve as hydrodynamic bearings and exhibit the ability
to store lubricant [8]. Moreover, the surface textures reduce the real area of contact and trap
wear particles [9,10].

Other authors even highlighted the positive effect of surface textured rubber seals in
soft elasto-hydrodynamic lubrication (SEHL), resulting in a significant friction reduction
compared to the untextured references [11–13]. However, it has also been found that an
inappropriate selection of the surface texture dimensions leads to a detrimental increase in
friction due to excessive enlargement of cavitation zones in the lubricant, causing a reduced
local film thickness and load carrying capacity [14,15]. Furthermore, the influence of the
real dimple shape of textured mechanical seals has been identified as an important factor
that needs to be considered for valid friction determination [16].

1.2. Reduced Order Modelling

The introduction of extended methods, based on artificial intelligence (AI), which go
further than usual tribological measurements, is beneficial for friction predictions. The
selected AI technique is based on the digital twin (DT) paradigm, i.e., a virtual represen-
tation of reality [17–19]. Several techniques belong within the DT paradigm, the most
popular being Reduced Order Modelling (ROM) [20,21] and machine learning (ML) [22].
Both techniques are based on mathematical models for real-time simulations. In particular,
ROM consists of a set of numerical strategies for multi-variable problem simplification to
solve complex numerical systems and it aims to describe and, hence, predict a system’s
behaviour through a mathematical approximation, by preserving its main characteristics,
as described in [23]. Tensor rank decomposition (TRD) approach is a non-intrusive, i.e.,
completely data-driven, method that allows to describe a complex system’s behaviour,
where its variables influence each other, as a simplified mathematical function that de-
scribes each variable’s effect separately. As previously detailed in [23], TRD is based on the
assumption that a problem of N, not necessarily independent, variables can be rewritten as
the product of N one-dimensional functions, one for each of the variables of the system, as
shown in Equation (1):

F(v1, . . . , vN) =
M

∑
m=1

αm

N

∏
n=1

fm,n(vn) (1)

where M is the order of approximation of the ROM model and αm, m = 1, . . . , M are
weighting coefficients. The functions fm,n, in their most simple form, are piecewise linear
functions; hence the adjustment parameters are the positions and the values at which the
functions change slope. The adjustment of all these parameters is carried out through a
least square optimisation.

The first term of the sum in Equation (1) represents a first approximation of the system,
being its corresponding coefficient α1 the largest one, while the following terms would be
corrections to it and will generally have lower coefficient values unless the correction only
applies to a specific outliers population and does not affect the general trend of data.

1.3. Objectives

Although many experimental and model-based studies have been accomplished
on the subject of friction reduction of surface textured components, all investigations
require extensive series of experiments or complex contact- or fluid-mechanic simulations.
Therefore, this paper aims to introduce a novel approach, in which a limited number of
friction measurements of surface textured rubber samples are combined with ROM to
identify optimal surface textures as a function of the prevailing operating conditions in
real-time. Besides the nominal dimple texture parameters, the real dimple dimensions,
defined by diameter, distance, and depth, are taken into account for the friction values
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computed by the ROM. Therefore, ROM technique is further used to determine nominal
surface texture values uncertainties for valid friction prediction.

2. Materials and Methods

The following Sections are dedicated to the description of the experimental studies and
the used software, data analysis (dataset publicly available under [24]), and statistical tools.

2.1. Rubber Specimen Geometry and Surface Texture Parameters

The objective of the experimental testing procedure is to measure the friction between
surface textured rubber specimens and a rotating counter surface by utilising a pin-on-disc
tribometer. The grinded steel counter surface exhibits a surface roughness of Ra = 0.50 µm,
but no further texturing. Due to the variety of seal geometries available on the market, a
simplified rubber sample geometry was chosen for the experiments, in order to test the
surface texture-induced friction variation independent of a specific seal geometry. The
corresponding geometry of the rubber samples is shown in Figure 1a.

Figure 1. (a) Geometry of the rubber specimens including the most relevant dimensions, (b) picture
of the rubber specimen with focus on the dimple texture and (c) positioning of the dimples in relation
to the relative velocity vector.

A 2 mm thick layer of a fluorelastomer with a shore hardness of 80A (FKM 80A) is
vulcanised onto a blue anodised aluminium specimen holder. Furthermore, the contact
zone of the 30 mm diameter rubber sample has a spherical shape to avoid edge effects in
the dynamic contact.

The surface textures are applied to the contact areas of the rubber samples in the form
of deterministic positioned dimples, see Figure 1b. The geometry of the circular dimples is
defined by the diameter, the distance and the depth. The corresponding parameters and the
alignment of the dimples are shown in Figure 1c. During the test procedure, the positioning
of the dimples, within a squared area, was rotated by an angle of φ = 45◦, since preliminary
experiments showed about 20% greater friction reduction in this arrangement compared to
φ = 0◦. The reason for this is the avoidance of continuous flow channels without dimples in
the direction of relative motion for φ = 45◦. The angle φ between the square shaped texture
arrangement and the relative velocity vector is visualised in Figure 1c.

In order to perform the experiments, test specimens with eight different surface
textures were manufactured by texturing during moulding (TDM). The associated sample
number i and the nominal texture parameters are listed in Table 1.

Table 1. Nominal dimple texture parameters defined by diameter, distance and depth.

Sample i Dimple Diameter Dimple Distance Dimple Depth
[µm] [µm] [µm]

1 100 300 10
2 200 100 10
3 200 200 10
4 300 100 30
5 300 200 20
6 300 200 30
7 300 300 20
8 - - -
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The parameter range of the dimple dimensions was selected to ensure a transferability
of the textures to dynamic seal applications. For example, if the diameter of a dimple is
larger than the contact width of a seal, the system would leak. Since the contact width
of many lip seals is only 0.80 mm or less [25], the maximum size of the dimple diameter
and distance was set to 300 µm. In contrast, e.g., the lower limit of the dimple diameter
of 100 µm was determined by the accuracy of the LST process of the TDM manufacturing
method. Based on the texturing results of the rubber samples, the transfer of the textures to
real seals has already been successfully realised, but will not be discussed within the scope
of this work.

The design of experiment (DoE) on the variation of the surface texture parameters is
chosen according to the requirements of the ROM, described in Section 2.4. While seven
specimens exhibit a dimple texture, one specimen was produced without dimples to serve
as a reference for the dimple-induced friction variation of the other textures. The surface
roughness of all eight samples was adjusted to an identical value of Ra = 0.50 µm by laser
surface processing of the mould. Therefore, the influence of dimple textures on friction is
investigated independently of different surface roughnesses.

2.2. Test Rig Setup and Experimental Procedure for Determining the Coefficient of Friction

A pin-on-disc tribometer is utilised to measure the friction forces between the rubber
specimens and the rotating steel counter surface. The design of the test rig is shown in
Figure 2a.

Figure 2. (a) Pin-on-disc tribometer design, (b) picture of the tribometer with focus on the rubber specimen and the rotating
counter surface, and (c) contact conditions between the rubber sample and the counter surface.

The rotation of the counter surface is realised by a servomotor. The force sensors
measure both the force FN in the normal direction of the sample, as well as the friction
force FF in the circumferential direction of the rotating counter surface, compare Figure 2c.
The rotational speed n of the counter surface and the normal force FN are kept constant
during each measurement, in order to measure quasi-stationary friction values under
steady operating conditions. Each relative velocity vr, specified in Table 2a, is tested at
each of the 3 different contact pressure levels pc,max, given in Table 2b.

The relative velocity vr between the rubber specimen and the counter surface is equal
to the circumferential velocity vc at the point of contact: vr = vc. The velocity vr is
calculated from the rotational speed n of the counter surface and the distance r = 100 mm
between the shaft centre and the contact point, see Figure 2c, as defined in Equation (2).

vr = ωr = 2πnr (2)

The focus of this paper is on dynamic friction, so static friction is not investigated.
Thus, the rotational speed n of the servomotor was varied between 0.6 and 24.0 min−1,
resulting in relative velocities vr of 6 to 251 mm/s.
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Table 2. Operating parameters that are examined during the test procedure. (a) Rotational speeds n of the servomotor and
corresponding relative velocities vr between the rubber sample and the counter surface (2), (b) together with the normal
force FN , the related maximum contact pressure pc,max, the contact diameter dc between the rubber sample and the counter
surface, as well as the nominal contact area Anominal (2).

a

Rotational Speed Relative Velocity
n [min−1] vr [mm/s]

0.6 6
1.2 12
1.8 19
3.0 31
6.0 63

12.0 126
18.0 188
24.0 251

b

Normal Force Max Contact Pressure Contact Diameter Nominal Contact Area
FN [N] pc,max [MPa] dc [mm] Anominal [mm2]

3.9 0.5 4.2 13.8
7.9 0.7 5.0 19.6

13.3 0.9 5.8 26.4

The normal forces FN were selected to achieve maximum contact pressures pc,max
of 0.5, 0.7, and 0.9 MPa, which are typical values in pneumatic seal applications [26].
Because of the spherical shape of the rubber specimen, the variation of the normal force FN
influences not only the magnitude of the parabolic contact pressure distribution pc, but also
the dimensions of the nominal contact area between the rubber sample and counter surface,
see Figure 3b. Therefore, not only the maximum of the contact pressure distribution
pc,max is specified in Table 2b, but also the corresponding contact diameter dc and the
respective circular nominal contact area Anominal . The contact pressure distribution pc and
the contact diameter dc are computed by finite element analyses, taking into account the
rubber thickness of 2 mm. Within the static simulations, the rubber sample is pressed
against the counter surface with the defined normal force FN , see Figure 3a. At this, the
coloured spherical contact area of the rubber specimen is brought into contact with the
grey flat counter surface, resulting in the specified contact area and contact pressure pc.

All components are modelled as 2D axisymmetric parts. A hyper elastic Mooney-
Rivlin material behaviour is assigned to the 2 mm layer of the FKM80A rubber material,
which is specified by the temperature-dependent material parameters C10 = 1,442,425.12,
C01 = 208,308.34, D = 6.059933161 ×10−10, considering a Poisson’s Ratio of 0.4995. For both
measurements and simulations, the temperature is equal to 20 ◦C. The material of the anodised
aluminium sample holder is modelled as pure elastic part with a Young’s modulus of 70 GPa
and a Poisson’s Ratio of 0.34. The counter surface is defined as rigid part.

All experiments are performed with an adherent silicone grease OKS 1155 in the
dynamic contact, which exhibits a base oil viscosity of 100 mm2/s at 25 ◦C [27]. The same
lubrication and conditioning procedure was applied to every rubber specimen before the
actual friction measurements to ensure comparability between the results. Every single
measurement lasts for 5 s and each measurement was repeated 5 times to ensure a statis-
tical certainty. In order to generate the quasi-stationary friction values µuntext for rubber
specimen 8 and µtext,i for rubber samples i = 1–7, the mean value of each measurement
is calculated over the entire measuring period of 5 s. The friction coefficients µuntext and
µtext,i are evaluated to identify dimple textures with the highest friction reduction potential.
In addition, the results are further processed to generate the ROM model.
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Figure 3. (a) Assembly of the finite element method (FEM). The coloured spherical contact area of the rubber specimen is
brought into contact with the grey flat counter surface. (b) Parabolic contact pressure distribution pc as a function of the
contact diameter dc.

2.3. Method of Measurement for Real Dimple Dimensions

An additional important aspect for the determination of the influence of the dimple
textures on friction are the real dimensions of the dimples. While the nominal values
of the investigated textures are given in Table 1, the real values of diameter, distance
and depth vary due to imperfections in the innovative industrialised TDM production
process of the rubber specimens. During this process, the negative of the desired texture
is applied to a mould by LST ablation. A 5-axis 100 W pico-second laser is utilised for
this purpose. During the injection moulding and vulcanisation procedure, the texture is
directly transferred from the mould to the rubber surface. Protrusions in the mould become
dimples in the elastomer. Due to imperfections in the laser machining of the mould, both a
deviation from the nominal dimple parameters and ring-shaped cavities in the peripheral
areas of the dimple valleys are identifiable, see Figure 4b. These deviations mainly result
from re-solidifying metal vapours on the surface of the metallic vulcanisation mould.

In order to measure and visualise the actual dimple texture dimensions, a 3D optical
microscope, based on focus-variation, is used. Figure 4a shows an exemplary 4 × 4 mm
surface scan of rubber specimen 6 with a nominal dimple diameter of 300 µm, a distance of
200 µm and a depth of 30 µm.

Figure 4. (a) Microscope image of rubber specimen 6, considering a measured area of 4 × 4 mm and (b) related height
profile h as function of the measuring length l, considering the indicated line scan trough four adjacent dimples.

Figure 4b shows the corresponding line scan as height profile h over the measuring
length l, which is measured through the centre of four adjacent dimples. The positions that
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are measured to determine the real dimple dimensions of diameter, distance, and depth
are marked in the height profile. To ensure accurate measurement results of the dimple
dimensions, the curvature of the contact surface of the rubber samples was subtracted,
resulting in the flat surface scan depicted. Beyond this, no corrections were made to the
surface scans. The dimple dimensions were measured at 16 different positions of the
textured area of each rubber sample. The mean values of the 16 measurements and the
corresponding dimensionless texture parameters are listed in Table 3.

Table 3. Real dimple dimensions, indicated by diameter, distance, and depth. The aspect ratio is the quotient of dimple
depth and diameter. The textured area percentage is determined from the quotient of the textured area Atextured and the
nominal contact area Anominal .

Sample i Dimple Diameter Dimple Distance Dimple Depth Aspect Ratio Textured Area
[µm] [µm] [µm] [%]

1 135 258 16 0.11 9
2 242 100 11 0.05 39
3 241 165 10 0.04 28
4 337 66 35 0.10 55
5 330 170 22 0.06 34
6 346 153 35 0.10 37
7 336 252 20 0.06 25
8 - - - - -

2.4. Software Development for Reduced Order Modelling

The software library (Twinkle), implemented and used to compute the ROM models, is
available on GitHub platform [28] and described in [23], where its basic concept, structure
and environmental dependencies are detailed.

Within this study, two separate ROM models were computed: one for untextured and
one for textured tribometer samples data, consisting of 24 and 168 data points, respectively.
The reliability of the two obtained ROM models was then validated using Python Scikit-
learn [29] (version 0.22.1) k-fold cross validation technique, where a train-test procedure is
performed k-times, randomly extracting a k-fraction sub-dataset for testing [30]. For the
validation, the parameter k was set to 10, so that 10 different train-test validations were
performed, randomly selecting the corresponding 90%–10% data fractions each time a new
validation was performed.

Moreover, minimum values of the ROM function, i.e., Equation (1), were obtained
using the ALGLIB Free Edition library [31], version 3.14.0, to find the surface texture
dimensions that allow minimising friction, as described in Section 3.5.

Twinkle library can be described through the supervised learning algorithm concept
in ML [32,33]. The input values used for ROM construction were the dimple dimen-
sions, i.e., depth, diameter and distance, when available, together with pressure and
velocity (please refer to Tables 1 and 2 or the available dataset under [24]), the output
being the experimentally measured friction coefficient. Within the scope of this paper
Equation (1) would represent the friction coefficient, expressed as the sum of 2 or 17 terms
(in case of untextured or textured surface data, respectively). Each term being the product
of one-dimensional functions, i.e., one function for each input separately, as shown for
simplicity in Equation (3) for the untextured case.

µ(pressure, velocity) = α1[ f1(pressure) f1(velocity)] + α2[ f2(pressure) f2(velocity)] (3)

where α1 and α2 are the weighting coefficients of each computed term. The functions f1
and f2 are one-dimensional piecewise linear functions that describe the impact, on the
friction outcome, of each input separately.
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2.5. Reduced Order Modelling Data Pre-Processing for Friction Reduction

The friction variations (in%) obtained with the introduction of a dimple texture on the
rubber surface are evaluated using Equation (4) in order to quantify the surface texture-
induced friction variations.

∆µ = 100
µuntext − µtext,i

µuntext
% (4)

In Equation (4) textured cases are compared to their corresponding untextured re-
sult, so that a negative value suggests a friction increase and a positive one reveals a
friction reduction.

The final ∆µ prediction was obtained using Equation (4), where the µuntext and the
µtext,i values, predicted by the ROM models, were used, instead of using the experimentally
measured results.

The two datasets, prepared and used in the statistical analysis, were created from two
data samples of 48 data points each, using Python NumPy version 1.18.1 [34] and SciPy
version 1.4.1 [35] libraries, as described in Sections 2.6 and 3.3.

2.6. Statistical Analysis of Real Dimple Dimensions

Due to manufacturing tolerances, the real dimple dimensions are not equal to the nominal
ones. Experimental data were used to extract statistical information from 16 measurements of
geometrical parameters of the textured surface, i.e., mean values and standard deviations for
the three geometrical parameters were identified: dimple depth, diameter, and distance. The
measuring procedure and mean values are described in Sections 2.3 and 3.1, respectively. By
comparing the results to a foreseen normal distribution centred on the nominal value, having
as standard deviation the value obtained from the different repetitions, it was possible to infer
the type of probability density function (PDF) of each of the studied parameters.

Once the PDFs were known, the dimple depth was varied separately, while diameter
and distance were varied together, as their variations are not independent and occur in the
same plane, as defined by the textured area (Section 3.1). To do that, not all data were taken
into account, but only those dimple parameters whose variations fell within the ROM’s
definition limits, minimum and maximum values in Tables 1 and 2, which resulted in 48
data points for both datasets, that were obtained when vertical, i.e., depth, and horizontal,
i.e., diameter and distance, variations were applied.

The PDFs were hence created by means of a Python script and were used to generate
the above mentioned datasets of 48 data points each, as it follows. Each original point was
replicated 100 times where the nominal values were changed accordingly to their evaluated
PDFs and a final amount of 4800 points were obtained. As mentioned before, the described
approach was performed two times: one repeating depth values only and a second time
replicating diameter and distance values together. Since dimple diameter and distance are
dependent magnitudes, these were made to vary accordingly to one another as follows:
at first a new diameter value was randomly generated through the known PDF, then the
cumulative density function (CDF) was obtained for the specific diameter value and the
corresponding distance value was calculated as the value holding the complement of the
CDF in the distance PDF.

The new obtained dataset contains input parameters statistical fluctuations and was
used to perform ROM predictions on the enlarged sets of points, where the dimple values
experimental variations on dimple dimensions’ nominal values are taken into account. The
effects on friction due to the experimental texturing deviations were then analysed and a
t-Student test was used for a statistical comparison of the obtained results to an ideal PDF
around nominal surface texture values, as described in Section 3.4.
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3. Results

In the following subsections the results obtained from the experimental tribotests and
dimple dimensions nominal values assessment, the data pre-processing and the statistical
analysis of textures dimensions are detailed.

3.1. Measurement Results of the Real Dimple Dimensions and Definition of Dimensionless
Dimple Parameters

The aim of the real dimple dimensions measurement procedure, which has been
previously described in Section 2.3, is the identification of the effective texture geometry.
While the real dimple diameter and depth reveal larger values compared to the nominal
dimensions, the dimple distances are smaller than the nominally specified values, compare
Tables 1 and 3.

In addition to the diameter, distance, and depth dimple parameters, the dimensionless as-
pect ratio and textured area (equal to area density), which are often referred in literature [36–38],
are further specified in Table 3. The aspect ratio is the quotient of the dimple depth and the
dimple diameter and varies between 0.04 and 0.11 for the analysed textures. The area density is
equal to textured area percentage. It is calculated by the quotient of the textured area Atextured
and the nominal circular contact area Anominal, which are both visualised in Figure 5.

Figure 5. (a) Red marked nominal circular contact area Anominal between an untextured rubber
specimen and the counter surface and (b) contact area of a textured sample. The textured area
Atextured is indicated by the black circular dimples, the untextured area that is in direct contact with
the counter surface is coloured in blue.

The area density of the studied textures varies between 9% and 55%. Despite the fact
that the three different normal forces FN analysed result in three different nominal contact
areas Anominal , the percentage textured area is independent of the nominal contact area
Anominal , since more dimples come into contact with increasing normal force FN , compare
also Table 2b.

3.2. Reduced Order Modelling on Friction Coefficient Data

The two ROM functions (please refer to Equations (1) and (3)), obtained for untextured
and textured friction coefficient datasets, converged to a stable solution, using only 2 and
17 terms, respectively. In order to assess the correctness and precision of the ROM results,
the predicted value is compared to the corresponding experimental one, as ideally, both
should be the same. The prediction lines are plotted, for both untextured and textured
ROM models, in Figure 6a,b.

From Figure 6a,b it is possible to conclude that the ROM prediction is extremely
accurate, being the obtained ROM models’ standard deviations σuntext = 0.0014 and
σtext = 0.0012 for untextured and textured data, respectively, and both regression lines
(dashed black) match the goal prediction line (solid red).

Both ROM models were validated using the k-fold cross validation technique (see
Section 2.4). The results obtained for the R2 are shown in Table 4a,b for untextured and
textured data, respectively.
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(a) (b)

Figure 6. ROM prediction for (a) untextured and (b) textured friction coefficient data. The blue dots are obtained by
evaluating the ROM with the experimental data, the dashed black line is the linear regression that fits the data, while the
solid red line represents the ideal ROM result, where the ROM evaluation on each experimental friction value returns the
same value.

Table 4. (a) Untextured and (b) Textured ROM R2 for Train and Test datasets when the k-fold cross validation method
is applied.

a b

Untextured ROM R2 Textured ROM R2

Train Test Train Test

1 1.000 0.895 1 1.000 0.914
2 1.000 0.968 2 1.000 0.872
3 1.000 0.988 3 1.000 0.882
4 1.000 0.974 4 1.000 0.943
5 1.000 0.988 5 1.000 0.923
6 1.000 0.903 6 1.000 0.896
7 1.000 0.871 7 1.000 0.963
8 1.000 0.994 8 1.000 0.912
9 1.000 0.915 9 1.000 0.953

10 1.000 0.982 10 1.000 0.938

avg 1.000 0.948 avg 1.000 0.919

Table 4a,b show that for both ROM models the results of the validation are very precise
and that there is always an excellent correlation between the input data, i.e., untextured or
textured friction coefficient data (available under [24]), and the ROM prediction.

3.3. Reduced Order Modelling on Pre-Processed Data for Friction Variations

As described in Section 2.5, the friction variations were computed according to
Equation (4), both for experimental and ROM predicted data. Similarly to Section 3.2,
a prediction line was obtained to assess the accuracy of the results, obtained as the com-
bination of the two (untextured and textured) ROM models. The results are shown in
Figure 7.
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Figure 7. 2-ROM-models prediction for combined untextured and textured friction data, according
to Equation (4). The blue dots are obtained by evaluating the combined 2-ROM predictions with the
combined experimental data (Equation (4)), the dashed black line is the linear regression that fits
the data, while the solid red line represents the ideal prediction result, where the predicted values
perfectly match the experimental ones.

From Figure 7 it is observed that the ROM prediction is highly accurate, since the
regression line (dashed black) is highly comparable to the goal prediction (solid red).

Moreover, an error propagation was performed on the friction percent variation
variable (Equation (4)), in order to assess the maximum error assumed by the predictive
model. For this purpose, experimental deviations on friction measurements were not
included, since these are not considered intrinsic properties of the prediction accuracy, but
depend on the a-priori goodness of the dataset solely. The results obtained when taking
into account both the error propagation on ∆µ and the standard deviation obtained for the
2-ROM prediction, i.e., σ = 1.4412 as shown in Figure 7, show values between 2% and 9%,
with a mean value of 3% and 95% of data with a prediction deviation below 5%. Moreover,
a study was performed to check the impact that each input parameter has on the measured
friction, according to Equations (1) and (3), as shown in Figure 8 for textured ROM.

Figure 8. Textured data ROM’s first term. The one-dimensional functions, for each variable are shown separately in the
plots, according to Equation (1), labelled with letters from (a–e).
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The one-dimensional functions (specified in Equation (1)) for the textured ROM,
shown in Figure 8, represent the impact of each input on the friction variation. The textured
ROM shows α1 = 46.0479 for the first term (see Equations (1) and (3)), being its weighting
factor one or two orders of magnitude higher than the remaining terms. The first term of
the ROM series expansion can be, hence, considered a fair approximation of the system,
where other terms are corrections to it, as described in Section 1.2. From Figure 8 one
can see that bigger friction variations occur at extreme surface texturing parameters, e.g.,
smaller dimple depth and bigger diameter values.

3.4. Statistical Analysis Results of Real Dimple Dimensions

As described in Section 2.6, PDFs were extrapolated for all texture parameters and
were used to assess the measured differences from the desired nominal dimple values. The
observed variations from the nominal dimple dimensions, described in Section 2.3, were
introduced into the datasets in order to predict the corresponding friction variation using
the previously computed ROM. The observed PDFs were normal distributions for both
dimple depth and distance, while for diameter a skewed normal distribution was observed.
dimple depth PDF showed a right shift of the mean equal to 3 µm and a standard deviation
equal to 1.5 µm. Concerning the distance, the right shift of the mean was equal to 41 µm
and 37 µm for corresponding nominal values of 200 µm and 300 µm, with a standard
deviation of 13 µm and 9 µm, respectively. These findings led to significant differences in
observed friction values, which means that deviations from nominal texture values, shown
in Figures 9 and 10a,b, do actually affect friction as observed in Figure 11a,b.

Figure 9. Dimple depth specific PDF and corresponding nominal value.

A ROM model allows verifying that the introduction of a statistical noise on nominal
surface texture values affects friction, as shown in Figure 11a,b. From these Figures it
is possible to observe significant variations in friction PDFs distributions when depth
or diameter and distances, respectively, vary from nominal values, and to compare the
obtained friction distribution to a normal PDF with zero mean and σ = 0.01.

A two-tailed t-Student test was performed to check the compatibility of the two PDFs,
i.e., the noisy nominal values friction distribution (orange) and the ideal friction distribution
(green), shown in Figure 11a,b. The test result showed a statistically significant difference
between the noisy and the ideal PDF in case of dimple diameter-distance variations,
according to what can be expected from Figures 9 and 10a,b.
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(a)

(b)

Figure 10. (a) Dimple diameter and (b) distance specific PDFs and respective nominal values.

As previously described in Section 2.5, two expanded datasets were generated in-
troducing statistical noise to the textured data sample by varying the nominal dimple
parameters (i.e., depth, diameter, and distance) according to the obtained PDFs. When
depth was made to vary, only values equal to 20 µm could be used; in fact, nominal depth
values of 10 µm and 30 µm would cause friction values to fall outside the ROM domain if
a PDF was applied to generate data around these values. In this case the corresponding
ranges for dimple diameter and distance were 200 µm and 200–300 µm, respectively. For
the second dataset, given the ROM definition domain, feasible dimple diameter and dis-
tance ranges resulted in 100–200 µm and 200–300 µm, respectively, corresponding to depth
values of 10 µm only. It is important to remark that, in this case, given the geometrical
definition of the dimples, diameter and distance are inversely correlated and that the two
PDFs are very different, being the first one a skewed distribution and the second a normal
one (please refer to Section 2.5 for method details).
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(a)

(b)

Figure 11. Friction coefficient distribution (orange) when (a) dimple depth or (b) diameter and
distance are varried according to their specific PDFs (Figures 9 and 10a,b, respectively), centred and
compared to a normal distribution (green) with zero mean and σ = 0.01.

Figure 12a,b show the findings for the friction prediction when the geometrical pa-
rameters of the seals deviate from nominal values.
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(a)

(b)

Figure 12. (a) ROM prediction with statistical noise introduction on depth and (b) on diameter and distance. The blue dots are
obtained by evaluating the ROM on the statistically expanded dataset, the solid red line represents the ideal ROM result and
the error bars show the friction variations linked to (a) depth or (b) diameter and distance deviations from nominal values.

According to the results shown in Figure 12a,b, when the textured ROM was evaluated
on the expanded noisy dataset, friction prediction turned out to be completely affected by
the statistical nominal texture values deviations. Once again one can observe that when
diameter and distance were made to vary, these variations produced big uncertainties
on the predicted friction values and statistically significant differences on mean values,
which was corrected when an ideal PDF was used for texture parameters. In order to prove
this, friction prediction was repeated using the green distribution in Figure 11a,b, where
the texture parameters are centred in their nominal value, with a standard deviation of
σ = 0.01. The obtained results are shown in Figure 13a,b.
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(a)

(b)

Figure 13. (a) ROM prediction with statistical noise introduction on depth and (b) on diameter and distance, with centred
mean on nominal value and σ = 0.01. The blue dots are obtained by evaluating the ROM on the statistically expanded
dataset, the solid red line represents the ideal ROM result and the error bars show the friction variations linked to (a) depth
or (b) diameter and distance deviations from nominal values.

3.5. Experimental Friction Measurement Results and ROM Friction Prediction Outcome

The objective of the experimental testing procedure is to identify specific surface
textures, which exhibit the lowest friction as a function of the relative velocity vr and the
contact pressure pc. In Figures 14–16 the quasi-stationary friction coefficients µ of the
8 rubber specimens with different textures are shown as function of the relative velocity vr.
Data points depicted in Figures 14–16 are based on 5 measurements, whose mean values
are shown. Error bars are not provided in the figures due to better visibility, although
sigma ranges for the whole pool of data varied between σmin = 0.004 and σmax = 0.196 with
a mean value of σmean = 0.005.
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Figure 14. (a) Friction coefficient µ as function of the relative velocity vr for the eight different rubber specimens and (b) the
corresponding friction variation ∆µ in relation to the untextured rubber sample 8, for contact pressures of pc,max = 0.5 MPa.

Figure 15. (a) Friction coefficient µ as function of the relative velocity vr for the eight different rubber specimens and (b) the
corresponding friction variation ∆µ in relation to the untextured rubber sample 8, for contact pressures of pc,max = 0.7 MPa.

Each figure visualises the measurement results for one of the three different contact
pressures levels pc considered. In addition, the friction variations of the different rubber
samples are presented in relation to the untextured reference rubber specimen 8. Under
all operating conditions, friction-reducing, as well as friction-increasing textures, can be
identified. Positive values of friction variation indicate a texture-related reduction of
friction, while negative friction variation values describe a friction increase compared to
the untextured reference sample 8, see also Equation (4). Besides a texture related vertical
shift of the friction characteristic, a horizontal shift of the minimum can be observed as
well. Hence, surface texturing modifies friction in all regimes, which will be discussed in
another publication.

In the following, the textures with the highest and lowest friction are discussed for
each contact pressure level pc,max. For pc,max = 0.5 MPa rubber specimens 2 and 4 exhibit
the lowest friction when considering the entire velocity range, while sample 1 reveals the
highest friction level. Samples 2 and 4 have the highest area densities of 39% and 55%,
respectively, while sample 1 has the lowest area density of 9% within all textures examined.
Therefore, a clear trend is evident for pc,max = 0.5 MPa, where the largest area densities
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analysed lead to the lowest friction levels, while the lowest area density leads to the highest
friction level. The aspect ratio does not appear to have a major influence in this pressure
condition as it fluctuates for samples 1, 2, and 4 between 0.11, 0.05, and 0.10, so that no
clear trend is apparent.

Figure 16. (a) Friction coefficient µ as function of the relative velocity vr for the eight different rubber specimens and (b) the
corresponding friction variation ∆µ in relation to the untextured rubber sample 8, for contact pressures of pc,max = 0.9 MPa.

For pc,max = 0.7 MPa and pc,max = 0.9 MPa rubber sample 1 and 3 exhibit the lowest
friction level over the entire range of velocities. In contrast, specimen 7 shows the highest
friction. Despite this agreement for both pressure levels, no clear trend can be derived in
terms of dimple dimensions, area density, or aspect ratio. For example, sample 3 and 7
have similar area density values of 28% and 25%, respectively, as well as aspect ratios of
0.04 and 0.06. However, as mentioned above, the measured friction results of both textures
differ greatly from each other.

Since there is no clear trend for dimple texture, it is concluded that the texture needs
to be individually adapted to the existing operating conditions to minimize friction. For
this purpose, ROM is an extremely efficient tool. In order to demonstrate the benefits of
the ROM in vivid examples, four exemplary use cases were defined. The first theoretical
use case is a friction contact intended to operate at the lowest contact pressure level
pc,max = 0.5 MPa and the highest velocity vr = 251 mm/s within the operational conditions
experimentally analysed. During the friction measurement procedure, a maximum friction
reduction of 37% was already achieved with sample 4. However, the theoretical customer
requires a further enhanced friction reduction of at least 60%. By using the ROM, a friction
reduction of 63% can be predicted with the texture parameters given in row 1 of Table 5.

Table 5. Dimple dimensions predicted by the ROM, which further reduce friction based on the use cases.

Use Case Relative Max Contact Dimple Dimple Dimple Aspect Textured Predicted

Num. Velocity Pressure Diameter Distance Depth Ratio Area Friction Reduction
vr [mm/s] pc,max [MPa] [µm] [µm] [µm] [%] [%]

1 251 0.5 270 100 10 0.04 42 63
2 31 0.7 300 186 11 0.04 30 81
3 6 0.9 274 111 11 0.04 39 72
4 100 0.6 300 140 11 0.04 36 79

The second use case is an application that operates at a contact pressure pc,max = 0.7 MPa
and a velocity of vr = 31 mm/s. Friction measurements reveal a maximum friction reduction
of 63% for sample 1. Again, the friction can be further reduced by a suitable texture, which is
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predicted by the ROM. The ROM indicates a friction reduction of 81% compared to reference
seal 8 for the values specified in row 2 of Table 5.

The third use case is an imaginary technical requirement for a seal, which operates
under the highest contact pressure level of pc,max = 0.9 MPa and the lowest velocity of
vr = 6 mm/s within the considered conditions. The experimental friction results show a
maximum friction reduction of 48% for seal sample 1. With the use of the ROM, a reduced
friction of 72% can be predicted in relation to the untextured case with the values given in
row 3 of Table 5.

Based on the ROM results, one additional data point, indicated by a triangle, is added
to each of the three plots of Figures 14–16.

In addition to friction predictions, considering the experimentally analysed operating
conditions, one of the major advantage of the ROM is the ability to freely interpolate within
the parameter space of the operating conditions. This is why the fourth use case shows
the ROM prediction for experimentally untested working conditions, i.e., pc = 0.6 MPa
and velocity of vr = 100 mm/s, where the friction reduction is about 79%, for the texture
parameters shown in row 4 of Table 5.

The resulting aspect ratio for all four use case textures is equal to 0.04, while the
textured area ranges from 30% to 42%. Compared to the experimentally analysed dimple
textures given in Table 3, the dimple diameters are rather at the upper edge of the inves-
tigated texture dimensions, while the dimple distances and the depths are found in the
lower range of the dimple dimensions. However, the dimple values are not similar. Thus,
again it is obvious that a surface texture has always to be determined as a function of the
operating conditions in order to achieve a maximum friction reduction. For each distinct
application and individual technical requirement, textures have to be identified which
result in an optimum friction with respect to a defined reference. These ROM results are
not experimentally confirmed within the scope of this paper, as it would be necessary to
re-produce rubber samples with appropriate textures, which was not part of MouldTex
project [39].

4. Discussion

As can be concluded from Section 3.5, large texture-induced friction reductions, of up
to 70%, could already be found experimentally inside the investigated parameter range of
textures, velocities, and contact pressures. However, within the physical available samples,
it is not always possible to identify clear trends for dimple dimensions that explain a high
friction reduction compared to the untextured reference. Based on this finding, it is inferred
that the surface texture dimensions need to be individually adapted to the given operating
condition, in order to ensure a low friction level.

One possibility to identify optimal surface textures is the examination of a great num-
ber of dimple textures, which is significantly larger than the experimentally analysed set.
However, this approach would be time-consuming and expensive due to TDM production
requirements. The use of additional methods based on AI, such as ROM, are therefore
advantageous. In this context, ROM is an effective method for finding the most suitable
textures for specific operating conditions, as shown in Section 3.5, where the ROM is used
to predict friction reduction values for both experimentally tested and untested working
conditions, see Table 5 rows 1–3 and 4, respectively. Within this paper, ROM models have
been used to predict and explore friction behaviour of surface textured rubber specimens
by training the model on the experimental friction measurement results. Moreover, the
model is able to quantify the measured friction variations that occur when deviations from
nominal surface texture values are observed (Figures 9, 10a,b, 11a,b and 12a,b). ROM is
extremely useful for simulating and predicting a system behaviour, especially when the
physics behind its phenomenology are completely unknown or difficult to solve. Thanks
to the ROM algorithms, users can predict the behaviour of their system in real-time, and
specifically seal manufacturers can assess the parametric conditions that show the desired
optimised results and select them before the rubber seal production. The efficiency of a
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data-driven ROM, as it is for Twinkle [23], is particularly dependent on the collected data,
i.e., their associated error and their resulting manifold coverage.

With a thoroughly planned DoE it is possible to achieve an optimal space coverage,
which leads to a reliable ROM’s prediction result. The promising results, presented in
Section 3.3 for the 2-ROM error propagation (Figure 7) strongly support ROM’s accuracy
on the given dataset. Nevertheless, if larger amounts of data were available, the computed
ROM could be even more reliable in those space regions where less information was
collected and, hence, confidently retrieve the best texture that allow minimising friction,
according to friction variations computed in Equation (4). Moreover, if a ROM model
was computed using simulation data, a higher sample space coverage and hence better
reliability in the results could be achieved.

In addition, a ROM model allows verifying that the introduction of a statistical
noise on nominal surface texture values affects friction, as shown in Figures 11a,b, where
the two-tailed t-Student test showed a statistically significant difference between the
experimental friction distribution (orange) and the ideal one (green) for dimple diameter-
distance variations, see Figures 12a,b, were the difference on friction measurement are
linked to manufacturing deviations in the nominal values of dimple textures. These
variations were later compared to the effects obtained from an ideal PDF for dimple values
experimental variations, i.e., mean value centred on nominal surface texture values and
standard deviation σ = 0.01, as shown in Figures 13a,b, opening the way to potential surface
texture manufacturing quality and tolerance investigations.

5. Conclusions

Within the scope of this paper, a pin-on-disc tribometer was used to measure dynamic
friction in the contact of surface textured rubber specimens that were manufactured by
texturing during moulding (TDM). The operating conditions, defined by relative velocity
(vr ranging from 6 to 251 mm/s) and contact pressure level (pc,max ranging from 0.5 to
0.9 MPa), were chosen to correspond to the operating conditions of pneumatic seals. Based
on the different experimentally tested texture dimensions, a maximum friction reduction
of 70% was determined compared to the untextured reference, with a dimple diameter of
100 µm, a dimple depth of 10 µm and an area density of 9%.

However, since no global surface texture optimum could be found experimentally
that exhibits the lowest friction under all operating conditions, it is concluded that a
surface texture needs always to be determined individually, based on the prevailing
operating conditions, in order to achieve maximum friction reduction. For this purpose, a
novel methodology was applied, combining friction measurements with Reduced Order
Modelling (ROM). The objective of the ROM was the computation of optimal surface texture
parameters that provide the highest friction reduction within the given parameter space
of textures and operating conditions. By feeding the ROM with microscope-based texture
measurements, it also takes into account deviations of the real dimple dimensions from the
nominal dimple values for the output friction value. In summary, friction measurements
are suitable as input parameters for the ROM so that the use of ROM for friction prediction
has been proven successful. For demonstration, exemplary use cases were defined, from
which it can be concluded that ROM enables the identification of optimal surface texture
parameters that were not available for experiments, obtaining friction reductions from 63%
to 81%, which are significantly higher than the experimentally tested surface textures for
the same operating conditions. In addition, the value of ROM was further highlighted, as it
is also able to freely interpolate between tested operating conditions to determine optimal
textures for each operating condition within the range considered, resulting in a predicted
friction reduction of 79%.

Moreover, ROM applicability has been extended further, showing that the method can
be also used for statistical analysis, to evaluate the impact of manufacturing uncertainties,
observed on surface texture nominal values, on friction measurements. Thus, ROM is not
only an extremely powerful technique for scientific users to compute the friction reduction
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of surface textured components but also for industrial manufacturers of rubber compo-
nents, to design rubber surfaces and evaluate the impact of manufacturing deviations on
dynamic friction.
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