
The solution for Mould Texturing by Micro Laser Engraving

3D mould surface texturing

CONTEXT OF THE PROJECT

Friction is intrinsically related to seal performance. Surface texturing is a proven technique for reducing friction. Within recent years this technique has been applied and demonstrated for polymeric and elastomeric materials at laboratory level.

TECHNOLOGIES

- Friction & Wear Simulation
- Reduced Order Modelling
- Laser Micro-texturing
- Optical Technologies for Surface Inspection
- SolGel-based Release Agents

MouldTex will develop and demonstrate a novel methodology for the design and high volume manufacture of surface textured polymeric components with reduced friction and wear and longer life.

The novel methodology combines:

- advanced modelling software for the identification of surface texture patterns that lead to significant friction reduction for target rubber and plastic seals and applications
- software for the design of mould tools that enable the reliable transfer of texture patterns onto the seal surface
- novel automated laser system for the application of hierarchical laser induced micro- texture patterns to the mould tool surface

OBJECTIVES OF THE PROJECT

To develop a :

- friction modelling and optimisation software
- mould surface texturing method
- release agents for easy demoulding

- best practice for moulding and de-moulding using surface textured moulds
- inline optical inspection for surface texture pattern quality control.

- mould design tool
- To validate the results in demo pilot lines for the manufacturing of :
- mould tools
- rotational seals for engines
- piston seals

New solutions for your needs

PROJECT PARTNERS

Coordinator

aser or nothin

www.mouldtex.com

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 768705